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Abstract-The focus of the present study is the numerical simulation of multiple moving solid-liquid 
interfaces during natural-convection-dominated melting of a pure material contained in a vertical square 
enclosure imposed with time-periodic large-amplitude oscillatory wall temperature. A solution algorithm 
extended from the method developed in a previous study is used and demonstrated to be capable of tracking 
the multiple moving boundaries due to the time-periodic large-amplitude wall-temperature oscillation 
crossing the fusion point of the phase-change medium confined in the enclosure. The numerical results 
unveil interesting re-solidification and/or re-melting phenomena in accordance with the wall-temperature 
oscillation. There may coexist three solid-liquid interfaces during the sustained periodic solid-liquid phase- 
change process inside the enclosure. Accordingly, a complicated cyclic variation of the melting rate and 
the heat transfer characteristics arises as a result of the periodic occurrence of multiple moving boundaries 

inside the enclosure. 

INTRODUCTION 

OVER the past few decades, the heat transfer problem 
involved in solid-liquid phase-change processes (mel- 
ting/freezing) has been of great research interest due 
to its relevance to many technological applications 
such as latent-heat energy storage systems, casting and 
crystal-growth processes, latent-heat thermal control 
devices, to name a few. For a comprehensive dis- 
cussion of the recent advances concerning the solid- 
liquid phase change heat transfer problem we refer 
to refs. [l-4], where a large quantity of literature is 
mentioned and not repeated here. 
In this paper we present a numerical simulation of 
multiple moving boundaries arising in the natural- 
convection-dominated melting process of a pure 
solid-liquid phase-change material (PCM) from a ver- 
tical wall of a square en&osure, as illustrated sche- 
matically in Fig. 1, subjected to a temporally cyclic 
large-amplitude wall-temperature perturbation. The 
present study is a follow-up to our earlier works [5, 
61 in which an identical physical configuration was 
considered but with the sinusoidal oscillation ampli- 
tude of the hot-wall temperature limited such that 
the oscillatory wall temperature remained above the 
fusion point of the PCM. The work reported here 
represents a continuing effort to relax the above-men- 
tioned restriction on the imposed amplitude of the 
wall-temperature perturbation such that the oscil- 
latory wall temperature may pass through (lower and 

then higher than) the fusion point of the PCM, there- 
fore giving rise to phenomena of re-freezing and then 
re-melting of the PCM at the wall. As a result, multiple 
solid-liquid interfaces may emerge during the periodic 
melting process inside the enclosure. With the excep- 
tion of recent works of Hsieh and Choi [7, 81, it 
appears that there exists little or no previous work 
analyzing the multiple moving boundary problem 
induced by a time-variant thermal boundary 
condition. In refs. [7, 81, a unified approach based 
on a source and sink method was developed for the 
analysis of a diffusion-dominated solid-liquid phase- 
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FIG. I. Schematic diagram of the physical configuration and 
coordinate system. 
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NOMENCLATURE 

amplitude of oscillatory surface 
temperature 
dimensionless amplitude of oscillatory 
surface temperature, a/( Th - T1) 
specific heat 
Fourier number. c(, t/H’ 
gravitational acceleration 
height of enclosure 
thermal conductivity 
latent heat 
time period 
dimensionless time period, r,p+/H’ 
Prandtl number, L’,;z, 
average heat flux at vertical wall 
dtmensionless heat transfer rate 
Rayleigh number. 
gP(Fh- T,)H’I(v,x,) 
dimensionless position of solid- liquid 
interface 
subcooling factor. ( Tf- Tc)/(Fh- T,) 
Stefan number, cp,, (F,, - Tr)/L 
time 
temperature 
volume of liquid phase-change 
material (PCM) 
total volume of PCM 

If* volumetric fraction of liquid PCM. 
vnIi,l V” 

W width of enclosure 
I’ ,_r ’ Cartesian coordinates 
X, L dimensionless coordinates, x+/H, J‘ +/H. 

Greek symbols 
I thermal diffusivity, li,‘(pc,,) 
0 dimensionless temperature, 

(T- Tr)/(Th- I;-) 
I’ kinematic viscosity 

1’ density 

$I 

stream function 
dimensionless stream function I/’ ‘r! 

01+ vorticity 
w dimensionless vorticity. (rl+ HZ/r,. 

Subscripts 

; 
cold surface 
fusion point 

h hot surface 
1 liquid phase 
S solid phase. 

Superscripts 
average value. 

change process of a semi-infinite medium (Stefan 
problem) imposed with time-variant temperature and 
flux boundary conditions. 

MATHEMATICAL FORMULATION 

The physical configuration of the melting heat 
transfer problem under consideration is schematically 
tllustrated in Fig. 1. The.PCM contained in the square 
enclosure (H = W) is assumed to be initially at a 
uniform temperature r, (< r,). At a certain instant, 
t = 0, the left vertical wall of the enclosure is suddenly 
imposed with a temporally sinusoidal temperature 
perturbation of period p’ and amplitude a about a 
mean value of F,I ; while the right vertical wall is main- 
tained as an isothermal surface at T,. The horizontal 
walls of the enclosure are assumed to be insulated 
thermally. For the time-periodic natural-convection- 
dominated melting process considered here. the 
dimensionless governing differential equations for the 
conservation of mass, momentum and energy can be 
formulated in terms of vorticity, stream function, and 
temperature as follows [6]. 

In the liquid region 

J 

v2* = -_(u (4 

g + g z - g z = pt). 
?. ’ (3) 

, ’ 

In the solid region 

In the foregoing, the thermophysical properties of 
solid/liquid PCM are assumed to be independent of 
temperature; and the buoyancy-driven flow in the 
liquid PCM region is two-dimensional and laminar, 
adhering to the Boussinesq approximation. Morc- 
over, the volume change associated with soliddliquid 
phase change and viscous dissipation are neglected. 
The dimensionless initial/boundary conditions for the 
problem are : 

at Fo = 0: 

and for Fo > 0 

r=Oorl. $=g=O (6a) 
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2nFo 
3 = 0, $ = 0, 0 = 1 +A sin ~ 

i i 
(6b) 

P 

.Y= 1, *=t?=o (6c) 

and at the solid-liquid interface, the energy balance 
equation is of the form 

Moreover, the average heat transfer rates at the left 
and right thermally active walls of the enclosure are 
expressed as the dimensionless heat fluxes of the fol- 
lowing forms, respectively : 

43 
dp = k,(rii,- Tr). 0) 

r=l 

SOLUTION METHOD 

Numerical solutions of the model equations of the 
problem were obtained through a finite-difference 
method. The numerical discretization schemes 
adopted here basically follow those dscribed in earlier 
work [6]. The convective terms were approximated 
using the second-upwind scheme [9], while second- 
order central differencing was employed for the 
diffusion terms. The initial position of the melting 
front was located following the enthalpy formulation 
employed in earlier work [5]. As can be seen in the 
foregoing formulation, the time-variant left wall tem- 
perature during the second half cycle of the oscillation 
can be lower and then higher than the fusion point of 
the PCM, therefore giving rise to a phenomenon of 
re-freezing and then re-melting from the wall, if the 
dimensionless temperature oscillation amplitude is 
greater than unity (A > 1). It follows that multiple 
solid-liquid interfaces may coexist inside the enclos- 
ure. For the sinusoidal wall-temperature oscillation 
considered in the present work, there may coexist at 
most three solid-liquid interfaces dividing the con- 
fined PCM into four regions, as exemplified sche- 
matically in Fig. 1, such that a solid PCM layer is 
sandwiched between two molten PCM regions. To 
effectively treat the resulting multiple moving bound- 
aries, a solution procedure extended from the method 
of earlier work [6] was employed. The enthalpy for- 
mulation [5] was adopted to identify and locate a 
newly formed solid-liquid interface that may emerge 
in accordance with the sinusoidal oscillation of the 
wall temperature. Thereafter, as the solid-liquid 
phase-change process progressed, the existent moving 
boundaries inside the enclosure were calculated 
explicitly using the energy balance equation, (6d). 
Once the locations of the moving boundaries were 

determined, calculations for the temperature and flow 
fields across the enclosure were treated implicitly. 
Moreover, whenever the width of the solid layer sand- 
wiched between the liquid regions was smaller than 
the horizongal grid size, the solid PCM layer was 
treated as isothermal at the fusion temperature. 

The transient solution to the problem considered 
was obtained using a line by line relaxation method 
within each time step. The implicit iteration cal- 
culations continued until a relative convergence cri- 
terion of lO-4 was satisfied for each field variable 
(stream function, vorticity, and temperature) of the 
problem. As a result of a series of numerical accuracy 
tests for convergence with mesh-size and time-step, a 
uniform grid system of 41 x 41 and a time-step of 
1.25 x 10e3 were found to be adequate for the present 
calculation. Furthermore, the present numerical algo- 
rithm treating the multiple moving boundaries was 
validated by performing calculations for a con- 
duction-dominated melting and solidification prob- 
lem of a semi-infinite aluminum subjected to a time- 
dependent sinusoidal surface temperature [7]. As 
exemplified in Fig. 2, a good agreement between the 
prediction using the present algorithm for the multiple 
moving boundaries and the results of [7] was clearly 
obtained for the time-variant locations of the coexist- 
ent melting and freezing fronts due to the cyclic wall- 
temperature condition. 

RESULTS AND DISCUSSION 

Numerical simulations of the natural-convection- 
dominated melting process were undertaken for n- 
octadecane as the PCM filled in the square enclosure 
imposed with a time-dependent sinusoidal hot-wall- 
temperature condition. A total of ten simulations has 
been carried out with the relevant parameters in the 
following ranges : A = 0.0 to 1.5 ; p = 0.25 to 2.0 : 
Ra = lo4 to 10’; Ste = 0.1, and SC = 0.5. A com- 
prehensive parametric simulation for the relevant par- 
ameters of the present problem was not attempted in 

Present prediction 
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FIG. 2. Comparison of the predicted interface locations for 
a Stefan problem subjected to an oscillatory temperature 

with the results of ref. [7]. 
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this work. The results to be presented will mainly 
focus on the effect of the large-amplitude (A > 1) 
cyclic wall-temperature condition on the melting pro- 
cess and its heat transfer characteristics inside the 
enclosure. 

Similar to that observed in earlier works [5,6] under 
a cyclic temperature perturbation while keeping the 
amplitude less than unity (A < l), the melting process 
inside the n-octadecane-filled enclosure imposed with 
large-amplitude (A > 1) hot-wall-temperature oscil- 
lation is found to evolve towards a sustained 
synchronous oscillatory variation with time following 
a transient oscillatory regime. Furthermore, as exem- 
plified in Fig. 3, the steady periodic variation of the 
volumetric melting fraction (V*) and the dimen- 
sionless average heat transfer rates @,, and Qc) at the 
hot and cold walls of the enclosure for A > 1 behaves 
considerably differently than for A < 1. To have a 
close-up look of the difference in the cyclic variation 
between A > 1 and A < 1, Fig. 4(a) magnifies the 
temporal variation of V* and Qi, for three different 
temperature perturbation amplitudes A = 0.75, 1.1 
and 1.5 over the sixteenth cycle of the periodic melting 
process shown in Fig. 3, together with the cor- 
responding cyclic variation of the dimensionless hot- 
wall temperature in Fig. 4(b). It can be clearly seen in 
Fig. 4(a) that contrary to the smooth cyclic variation 
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FO/P 
FIG. 3. Temporal variation of melting fraction and average 
heat transfer rates at the vertical walls of the enclosure 
Imposed with a large-amplitude wall-temperature oscillation 

FIG. 4. Cyclic variation of (a) melting rate and average heat 
transfer rate at the hot wall, and (b) the imposed wall tem- 

perature. 

assumed by A = 0.75, a periodic variation of V* or 
oh with great complication arises for A = 1.1 and 1.5. 
The complicated cyclic behavior of oh for A = 1.5 in 
Fig. 4(a) can be characterized by several sub-intervals 
as denoted by the symbol sequence ‘a’-‘g’. The time 
interval ‘a’-‘b’ represents an ongoing re-melting pro- 
cess of the re-frozen PCM next to the left wall. Such 
a re-melting process actually starts from the instant 
denoted by ‘f’ in the preceding cycle, thereafter the 
wall temperature re-rises above the PCM fusion point. 
During the interval ‘b’-‘c’, f& is increased sharply 
up to a local maximum at the instant ‘c’. This is 
due to intensified natural convection with contin- 
uously increasing hot-wall temperature, eventually 
leading to the occurrence of re-melting through the 
top portion of the re-frozen PCM layer sandwiched 
between two liquid PCM regions. Thereby, the natural 
convective flow in the re-molten PCM region adjacent 
to the left wall penetrates into the liquid PCM region 
next to the unmelted PCM attached to the lixed- 
temperature cold wall of the enclosure. Over the dur- 
ation between ‘c’ and ‘d’, the heat transfer rate at the 
left wall, in accordance with the sinusoidal drop of 
the wall temperature, starts to decline quite mon- 
otonically and even becomes negative, that is a back 
heat flow out of the left wall of the enclosure. Further 
beyond the instant ‘d’, the left-wall temperature con- 
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(a) 15th cycle 

(b) 15llthcycle 

(c) 1512th cycle 

(d) 15ith cy& 
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FIG 5 Variation of flow structure and temperature distribution over a cycle of large-amplitude wall- 
temperature oscillations. A = I .S at(, = 0.5 and Ra = 104. 
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(e) 15ith cycle 

(f) 15ith cycle 

(g) 15~thcycle 

(h) 15ithcycle 

0, =0.634 

FIG. 5- continued. 
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we = -9.74O,Q_ =o 

Q, =-1.074,yl_=O.656 

tinues to fall bciow the PCM fusion pomt, whereby a through the left wall. Similarly, the breaking of the 
re-solidification phenomenon of molten PCM occurs. smooth oscillatory variation of the average wall heat 
Release of the latent heat accompanying the re-sol- transfer rate can be readily detected for A = 1.1 in 
idihcation phenomenon results in a precipitous Fig. 4(a) when the decreasing wall-temperature curve 
increase of heat flux extracted out of the enclosure crosses the fusion temperature of the PCM. During 
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(i) $01 cycle 

(j) 15: th cycle 
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e-=0.027 

e_ =l.O 
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FIG. 5-continued. 

the final quarter of the wall temperature cyclic oscil- 
lation, the negative heat transfer at the left wall gradu- 
ally decreases until the onset of re-melting as a result of 
the wall temperature re-rising above the PCM fusion 
point ; whence a positive heat transfer rate at the left 
wall resumes and becomeS greatly enhanced as the re- 
molten PCM region is further expanded with time. 
Moreover, for the smaller wall-temperature per- 
turbation amplitude A = 1.1, as shown in Fig. 4(a), 
the foregoing complicated variation of the melting 
rate and the heat transfer characteristics tends to be 
less distinctive. The above-elaborated complication of 
the periodic phase-change heat transfer behavior can 
be further inferred by examining the corresponding 
variation of the flow and temperature fields inside the 
enclosure as will next be discussed. 

Figure 5 presents a sequence of contour plots of 
isotherms (left) and streamlines (right) for A = 1.5. 

p = 0.5, and Ra = lo4 at different instants over the 
corresponding cycle of the wall-temperature oscil- 
lation shown in Fig. 4. In the contour plots, locations 
of the solid-liquid interfaces are denotgd by dashed 
lines. At the beginning of the cycle, as clearly shown 
in Fig. 5(a), there coexist three solid-liquid interfaces 
with a solid PCM layer sandwiched between two 
molten PCM regions in addition to the unmelted PCM 
zone adjacent to the right cold wall of the enclosure. 
There exists a high temperature gradient across the 
enlarging re-melting layer next to the left wall, while 
a relatively isothermal condition prevails in the central 
molten region. In accordance with the continuing rise 
of the left-wall temperature, the clockwise recirr 
culating flow in the re-melting layer greatly intensifies, 
hence resulting in a higher melting rate at the top 
portion of the re-frozen PCM layer. Consequently, as 
depicted in Fig. S(b). the top portion of the sand- 
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wiched solid layer has already been melted through, Wall-temperature oscillation, Fig. S(d), the re-melting 
and the clockwise circulation flow has extended across of the sandwiched solid layer has finished and the 
the tip of the re-frozen solid layer into the central number of the moving boundaries reduces to one. 
molten region, suppressing the counter clockwise cir- having the clockwise recirculation as the dominating 
cufating flow there. After the one-eighth cycle of the flow structure in the molten zone of the enclosure. 

(a) 6th cycle 

(b) 6.07th cycle 

(c) 6.lOth cycle 

(d) 6: th cycle 

Fro. 6. Evolutton of flow structure and temperature distribution over a cycle of large-amplitude wall 
temperature oscillations. A = 1.5 at p = 0.5 and Ra = 105. 
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Such an ordinary natural-convection-dominated molten zone becomes subsequently impeded. ~~.e,~_ 
melting pattern persists as the wall temperature con- bling the result found in ref. [5], ;It the end 01‘ the 
tinues to rise up to its maximum at the end of the second cluarter cycle a pocket of liquid PCM holtcl 
first quarter cycle. Thereafter the left-wall temperature than the left wall can be detected floating at the top 
starts its sinusoidal drop ; and the buoyant flow in the region of the molten Lone accompanied by the cmcrg- 

(e) 6ith cycle 

(f) 6ith cycle 

(g) 6ith cycle 

(h) 6ith cycle 

8-4.4792 

FIG. 6 cot~rinurd. 
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(i) 6$th cycle 

(j) 6ith cycle 

(k) 7th cycle 

FIG. t&continued. 

ence of a counter-clockwise secondary eddy at the left 
top corner. Another result worth noticing is that the 
melting front still continues to move to the right even 
as the left-wall temperature declines through the 
second quarter cycle. The melting behavior at this 
stage is mainly driven by extraction of the sensible heat 
stored in the existent molten PCM region. Further 
proceeding into the third quarter cycle, as the left- 
wall temperature continues to fall further, the counter- 
clockwise circulation becomes progressively inten- 
sified and expanded, suppressing the clockwise flow. 
Consequently a bicellular flow structure prevails in 
the molten zone. Once the left-wall temperature drops 
below the PCM fusion point. a re-solidification pro- 
cess arises from the wall. As elucidated in Fig. 5(i), at 
the end of the third quarter cycle, a new sol&liquid 
interface emerges as a result of a refrozen PCM layer 
formed at the left wall. The molten zone is accordingly 

reduced in size and appears to be somewhat iso- 
thermal as the clockwise recirculation next to the orig- 
inal melting front becomes gradually subdued. Over 
the final quarter cycle, the wall temperature rises, 
crossing the PCM fusion point, and the re-melting of 
there-frozen PCM adjacent to the left wall takes place. 
The flow and temperature fields inside the PCM-filled 
enclosure evolve progressively back to those shown in 
Fig. 5(a). At a higher Rayleigh number, Ra = 105, the 
cyclic evolution of the temperature and flow fields as 
well as the solid-liquid interfaces inside the enclosure, 
as depicted in Fig. 6, exhibits characteristics similar 
to those above-elaborated for Ra = 104. As can be 
expected, the buoyancy-driven flow developed in the 
liquid regions is greatly enhanced at Ra = 10’ as dem- 
onstrated by the higher extreme values of the stream 
function indicated in Fig. 6. 

In Fig. 7 the influence of varying time period of the 
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FIG. 7. Histories of melting rate and heat transfer rates under 
a fixed large-amplitude wall-temperature oscillation but with 

different time period. 

imposed large-amplitude (A = 1.5) wall-temperature 
oscillation on the temporal variation of the melting 
rate and the average heat transfer rates at the vertical 
walls is conveyed. The effect of increasing the time 
period appears to be similar to the observations in 
refs. [5, 61, i.e. that a marked amplification of the 
induced steady oscillation amplitudes of both the 
melting rate and heat transfer rate at the cold wall 
arises, as can be seen in Fig. 7 ; while an adverse effect 
occurs for the heat transfer rate at the hot wall. This 
implies that the effect of varying time period on the 
melting rate and the heat transfer rate has little or 
no bearing on whether the imposed wall-temperature 
oscillation amplitude is greater than one or not. 

Finally. the steady periodic melting behavior and 
heat transfer characteristics under the large-amplitude 
(A = 1.5) wall-temperature perturbation in Fig. 8 
show a dependence on the Rayleigh number generally 
similar to that found for A < 1 [5, 61. An increase of 
Rayleigh number tends to induce a higher-amplitude 
oscillation of the melting rate and the heat transfer 
rates at both vertical walls of the enclosure. Also as 
expected, the periodic mean values of the melting rate 
as well as the heat transfer rates at the vertical walls 
increase markedly with the increase of Rayleigh 
number. 

Pm. 8. Influence of Rayleigh number on the oscillatory meh- 
ing rate and heat transfer rate under a large-amplitude cyclic 

wall-temperature condition. 

CONCLUDING REMARKS 

The main objective of the present paper is to present 
a numerical simulation of multiple solid-liquid inter- 
faces arising in a natural-convection-dominated melt- 
ing process inside a square enclosure imposed with 
time-periodic large-amplitude wall-temperature oscil- 
lation crossing the fusion point of the confined PCM. 
To effectively detect and treat the occurrence of the 
coexistent multiple moving boundaries, a solution 
algorithm developed in an earlier study [6] has been 
extended and demonstrated to be capabl: of solving 
the multiple phase fronts induced by the large-ampli- 
tude oscillatory wall-temperature conditia on the 
PCM-filled enclosure. Considering n-octadecano as 
the PCM, parametric simulation has been performed 
mainly to illustrate the complicated solid-liquid 
phase-change phenomenon induced by the large- 
amplitude wall-temperature perturbation. As a result 
of the occurrence of re-solidification and then re-melt- 
ing phenomena induced by the time-periodic wall- 
temperature oscillation through the PCM fusion 
point, there may coexist three solid-liquid interfaces 
inside the enclosure. Accordingly, the steady periodic 
phase-change heat transfer rate at the wall as well 
as the melting rate assume a very complicated cyclic 
variation in comparison with that found without the 
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occurrence of re-freezing and re-melting phenomena. 4. S. Fukusako and N. Seki, Fundamental aspects of ana- 

The parametric simulation conducted here is certainly 
lytical and numerical methods on freezing and melting 

far from complete and further work will be carried 
heat transfer problems. In Annul Review of Numerical 

out in the future. In addition, experimental work in 
Fluid Mechanics and Heat Transfer, Vol. I (Edited by T. 
C. Chawala), pp. 351-395. Hemisphere, New York (1987). 

this subiect is needed for future studies. 5. C. J. Ho and C. H. Chu, Periodic melting within a square 
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